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ABSTRACT

Commonality or variance partition analysis has been

available to researchers as a very valuable supplement to

regression analysis for some time (Newton & Spurrell, 1967).

These methods were popularized in the well known Coleman

Equal Opportunity studies. Seibold and McPhee (1979)

presents an example analysis in a cancer study in which

regression results might have been seriously distorted if the

researchers had not conducted a commonality analysis.

However, the same analytic logic can be applied in

techniques other than regression. For example, canonical

correlation analysis subsumes regression as a special case,

so logically the method may be useful in multivariate

analyses as well (Thompson & Miller, 1985).

The paper illustrates how a multivariate commonality

analysis is conducted. A small data set is used to make the

discussion concrete. Thus, the paper will enable readers to

conduct their own multivariate commonality analysis using the

examples as a model.

3



METHODS OF MULTIVARIAT: COMMONALITY ANALYSIS

In a 1988 paper presented at the annual meeting of the

American Educational Research Association, Thompson

demonstrated that canonical correlation analysis, and not

multiple regression, is the most general linear model,

subsuming both univariate and multivariate parametric methods

as special cases. Following Knapp (1978), and using a

hypothetical data set, Thompson (1988) illustrated how

canonical analyses give the same results as t tests, and

correlation, ANOVA, MANOVA, multiple regression, and

discriminant analyses. He suggested, since canonical

correlation analysis subsumes multiple regression as a

special case, and since commonality analysis has proven

helpful in interpreting multiple regression results (Thompson

& Borrello, 1985), that interpretatiol of canonical results

would likewise be facilitated with the use of commonality

analysis. According to Daniel (1989, pp. 5-6), "the unique

explanatory power of individual independent variables in a

multivariate data set" is a significant issue which is

addressed by multivariate commonality analysis. Likewise,

Beaton (1973, p. 38) stressed the importance of commonality

analysis, stating that it "is a technique for assessing the

common and unique predictability of several regressors or

sets of regressors on a set of p > 1 regressands."

1
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In the present paper, a canonical correlation analysis

using a hypothetical data set of 22 observations, consisting

of three predictor variables and two criterion variables, is

interpreted. A commonality analysis of the data is then

explained and illustrated. These results are interpreted in

conjunction with the canonical analysis run on the data set.

The hypothetical data set involved 22 cases or

observations. The variables were opinions (on a scale of 1-

20) about various events which occurred during the Reagan

administration. Three variables were designated as predictor

variables: LESSFED (less federal aid), LESSWEL (less welfare

spending), and MOREDEF (more defense spending). Two

variables were designated criterion variables: MORESS (more

spending on social security) and CATMED (catastrophic

medicine insurance coverage) Table 1 presents the

hypothetical data. Table 2 presents descriptive statistics

for the data.

Insert Tables .1 and 2 about here.

According to Thompson (1988, p. 3), "(C]anonical

analysis, like all parametric methods, involves the creation

of 'synthetic' scores for each person." The synthetic scores

in canonical analysis are the composite scores on each

canonical function: a weighted criterion composite and a

weighted predictor composite. Although the SAS program

calculates the standardized z-scores and the synthetic
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composites automatically through the PROC CANCORR command,

both to illustrate what canonical correlation is and to

perform a subsequent commonality analysis, the synthetic

composite scores (also called variate scores) were computed

here within the SAS program presented in Appendix A. In

steps 6-10 of the program z-scores were computed. These z

scores were required to create the synthetic variables,

criterion composite scores (C1 and C2) and predictor

composite scores (P1 and P2), in the data set. Steps 11-14

in the program show the algorithm for creating these

variables: each z-score is weighted by a function

coefficient analogous to a beta weight, and these weighted

t:zoducts are then summed. The function coefficients were

derived from the canonical correlation results presented in

Table 3. The various correlations (steps 25 to 48) requested

in Appendix A command file were computed to illustrate what

structure coefficients, index coefficients, and canonical

correlations really are. The last commands (steps 49 to 51)

in Appendix A are multiple regressions on the synthetic

^riterion variable scores (C1 and C2) using every possible

combination of the predictors in the predictor variable set.

This SAS procedure, PROC RSQUARE, was very convenient in

generating these results, an essential component of the

multivariate commonality analysis.

Insert Table 3 about here.



As indicated in Table 3, the canonical correlation of

the predictors and the criterion variables for the first

function was .852653, and the squared canonical correlation

was .727017. In other words, the synthetic predictor

variable scores (P1) on the first function accounted for

almost 73% of the variance of the synthetic criterion

variable scores (C1). On the second function, however, the

squared canonical correlation was only .283516, accounting

for only 28% of the variance. The first likelihood ratio,

lambda, was .25, and the F was statistically significant at

the .0004 alpha level. The second function was not

significant (p > .4701).

As Thompson notes (1988, p. 6), the "canonical

correlation (Re) is nothing more (or less) than the Pearson

product-moment correlation between the synthetic variable

scores of the subjects on a given function." To reinforce

the meaning of the canonical correlation, a 'correlation

between the predictor composite scores (P1) and the criterion

composite sr-ores (C1) was also run (Appendix A program lines

25-26), and of course the result is equivalent to the Rc

value, as expected.

The first function for the very small data set of 22 was

statistically significant at a very stringent alpha level

(.0004). So, while statistical significance is a function of

sample size (i.e., as n increases, so does the probability of

finding statistical significance), the fact that results for

a very small data set were significant is an argument for its
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importance. Tests of statistical significance, however, are

being used more and more by researchers merely as a minimal

criterion "to use in deciding which canonical functions to

interpret" (Thompson, 1984, p. 20). Since only the first

function was significant, the interpretations that follow

will concern the first function only.

The standardized canonical function coefficients

reported in Table 3 are the synthetic weights used to

multiply the standardized zscores to compute the composite

variate scores. Thus, on the first function, the composite

criterion variable set was calculated using the formula Cl

(1.5059*ZMSS) + (.6529*ZCTMD), as shown in step 11 in

Appendix A. The formula for calculating the composite

predictor variate score was P1 ( 2.2983*ZLSFD) +

(.9122*ZLSWL) + (2.3081*ZMDF), as shown in step 13 in

Appendix A.

Canonical structure coefficients are reported in

Table 3. According to Thompson (1984) and Thompson and

Borrello (1985), structure coefficients are particularly

important; they serve as an invaluable aid in "interpreting

canonical results in terms of each variable's contribution to

the canonical solution" (Thompson. 4984, p. 24). The

structure coefficients of the criterion variables are the

correlation coefficients between the criterion variables and

the synthetic criterion composite scores (C1 or C2);

similarly, the structure coefficients of the predictors are

the correlation coefficients between the predictors and their
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synthetic predictor composite scores (P1 or P2). To

reinforce the meaning of the structure coefficients, a

correlation between the z-score of each variable and the

synthetic composite scores of the set to which each variable

belonged was also run. These commands are listed in steps 29

38 in Appendix A. The results are the same as those reported

in Table 3, computed also in the PROC CANCORR procedure

(steps 19-21). For example, the structure coefficient of

MORESS on the first function is .9434; the correlation

between ZMSS and Cl is .94375.

Index coefficients are also reported in Table 3. The

index coefficient is a measure of the relationship between a

variable and the synthetic composite scores of the variable

set to which the variable does not belong. To reinforce the

meaning of the index coefficients, a correlation between the

z-score of each variable and the composite set to which each

did not belong was also computed. The commands for these

procedures are listed in steps 39-48 in Appendix A, and

identical results from PROC CANCORR were presented in Table

3. For example. the index coefficient of MORESS with Pred 1

as computed by CANCORR is .6044. while the correlation

between ZMSS and P1 as computed by PROC CORR is .80440.

One can use the structure coefficients to calculate the

adequacy and the redundancy coefficients in order to enhance

interpretation of the canonical analysis, and these are also

reported in Table 3. The adequacy coefficients are

determined by squaring the structure coefficients for each



variable, then adding across the rows, and then dividing by

the number of variables to get the average. This average, or

adequacy coefficient, is a measure of "how much of the

variance in the variables, on the average, is contained

within the synthetic scores for that function" (Thompson,

1988, pp. 18-19). Stewart and Love (1968) suggested

multiplying the adequacy coefficient by the squared Rc to

yield a redundancy coefficient (Rd).

But according to Thompson (1988), interpretation of the

redundancy coefficient is not very useful in a conventional

canonical analysis, for several reasons. First, as Cramer

and Nicewander (1979) have proved, redundancy coefficients

are not truly multivariate, a fact which makes interpretation

of redundancy coefficients disturbing. One uses multivariate

methods in order to consider all relationships simultaneously

(Thompson, 1988), not to find the equivalent of a set of

univariate results which consider only one dependent variable

at a time. Second, it is contradictory to use an analysis

which uses function coefficients to optimize the Rc, but then

to interpret results which are not optimized as part of the

analysis, such as redundancy coefficients (Thompson, 1968).

However, commonality analysis, according to Thompson

(1988), does enhance interpretation of canonical results.

Thompson and Miller (1985, p. 2) maintain that the "analysis

indicates how much of the explanatory power of a variable is

'unique' to the variable, and how much of the variable's

explanatory ability is 'common' to or also available from one



or more other variables." The technique may be done in a

univariate regression case or in a multivariate canonical

correlation analysis. The only difference between the

univariate and the multivariate analysis is that in the

multivariate case the criterion variables must be converted

to a composite score, i.e., the synthetic composite score

(Daniel, 1989). The steps used to conduct multivariate

commonality analysis are, briefly, as follows: (a) run a

canonical correlation analysis on the data; (b) calculate the

z-scores and the criterion composite scores; (c) calculate

the regression equations, using all possible combinations of

predictors to predict the synthetic criterion composite

scores; (d) calculate the unique and common variance effects,

and then add the columns for each predictor variable to find

the sum of the explanatory power of each predictor. In the

present case, a commonality analysis was conducted only on

the first canonical function. Nevertheless, a commonality

analysis could also have been conducted on the second

canonical function if one were interested in determining the

explanatory power of the predictor variables on that

function.

Since a canonical analysis and the z-scores and the

composite scores were already computed for illustrative

purposes, the first two steps have already been completed.

To calculate the-, Rcs for every possible combination of

predictors on the criterion composite, PROC RSQUARE can be

run on the data, using C1 as the dependent variable (see



steps 49-50 in Appendix A). PROC RSQUARE is a SAS procedure

thAt will compute regressions on the dependent variable.

using every possible combination of predictors--in the

present case, singly, doubly, and all three at once. These

results are presented in Table 4. According to Daniel

(1989), the R-Square, when all three predictors are used in

combination, equals the squared canonical correlation. The

squated canonical correlation in Table 3 is .727017, within

rounding error of the R-Square (.72701639) for all three

predictors presented in Table 4.

Insert Table 4 about here.

There are seven pcssibie combinations of the three

predictors, labelled predictor sets #1-7 in Table 4. The Rc2

for each predictor set (derived from the PROC RSQUARE output)

is also listed. Table 5 lists the formulas for partitioning

the predictor sets and the results. For example, in order to

calculate the explanatory ability which is unique to ZLSFD,

one must subtract the variance explained by ZLSWL and ZMDF in

combination from the variance explained by ZLSFD, ZLSWL and

ZMDF in combination. The negative coefficients reported for

what is common to ZLSFD and ZLSWL and for what is common to

ZLSFD and ZMDF do not indicate that these variables have a

less t:lan zero explanatory ability. Negative calculations

indicate the presence of suppressor effects, such as negative

correlations between variables. Beaton (1973) and Thompson



c_nd Miller (1985) discuss such effects,

Insert Table 5 about here.

After computing these results, the appropriate

partitions must be entered under a column for each predictor,

as shown in Table 6. Adding the columns i,)1 each predictor

gives the sum of the partitions for each predictor. This

analysis shows that most of the predictive power of the

predictor variables is common to all three variables (.55109,

or 55%). In other words, although ZMDF alone can predict

63.87899 of the variance in Cl, 55.109% of the total

explanatory power is common to all three predictor variables.

The unique predictive ability of ZMDF is only 9.0224%

(63.8789 - 55.109).

Summary

According to Daniel (1989) and Thompson and Miller

(1985), there are several noteworthy advantages in conducting

commonality analyses. First, commonality honors the

relationships among variables by determining the degree to

which predictors in a set share variance with the criterion

vari-ble(s). Second, since commonality indicates the extent

of overlap of the variables, it is especially useful in the

behavioral sciences where predictor variables are often

correlated with each other. Finally, commonality reinforces

the recognition that canonical analysis is the most general

case of parametric significanc' testing. The disadvantage is
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that there are no statistical significance tests for

commonality analyses; however, since the emphasis in

commonality is on interpretation after a statistically

significant canonical correlation has been found, this

disadvantage is academic, and the advantages outweigh the

disadvantage.
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Table 1

Hypothetical Data

OBS

Criterion Variables

MORESS CATMED LESSFED

Predictors

LESSWEL MOREDEF

1 16 15 20 19 20

2 14 14 19 20 19

3 13 12 10 10 11

4 13 14 9 10 10

5 15 15 8 10 9

6 14 15 7 8 8

16 17 20 20 19

8 15 13 19 20 19

9 16 15 18 20 19

10 16 14 17 18 17

11 12 10 15 15 15

12 11 10 8 7 8

13 9 10 8 . 8
6

14 15 14 18 18 17

15 13 13 10 10 10

16 15 15 17 18 17

17 16 16 20 19 19

18 15 14 19 19 20

19 14 14 16 15 16

20 13 13 10 10 9

21 12 11 15 14 15

22 12 13 9 10 9



Tatle 2

Descriptive Statistics

Variable Mean Std Dev

MORESS 13.86363636 1.88466126

CATMED 13.50000000 1.92106121

LESSFED 14.18181818 4.84656347

LESSWEL 14.45454545 4.78815277

MOREDEF 14.18181818 4.78724857

Pearson Correlation Coefficients

Prob > /R/ under H0:RHO a 0 / N 22

MORESS CATMED LESSFED LESSWEL MOREDEF

MORESS 1.00000 0.86148 0.69100 0.74596 0.74179
0.0000 0.0001 0.0004 0.0001 0.0001

CATMED 0.86148 1.00000 0.45519 0.51769 0.48672
0.0001 0.0000 0.0333 0.0136 0.0216

LESSFED 0.69100 0.45519 1.00000 0.98123 0.98571
0.0008 0.0333 0.0000 0.0001 0.('001

LESSWEL 0.74596 0.51769 0.98123 1.00000 0.98093
0.0001 0.0136 0.0001 0.0000 0.0001

MOREDEF 0.74179 0.48672 0.98571 0.98093 1.00000
0.0001 0.0216 0.0001 0.0001 0.0000



Table 3

Canonical Correlation Analysis

Squared
Canonical Canonical Likelihood

Correlation Correlation Ratio F PR > F

1 0.852 53 0.727017 0.25102482 5.6435 0.0004

2 0.283616 0.080438 0.91956209 0.7873 0.4701

Standardized Canonical Function Coefficients

Criterion Variables Predictor Variables

Crit 1 Crit 2 Pred 1 Pred 2

MORESS 1.5059 -1.2691 LESSFED -2.2983 -2.1816

CATMED -0.6529 1.8580 LESSWEL 0.9122 5.6358

MOREDEF 2.3081 -3.5085

Structure Coefficients

Criterion Variables Predictor Variables

Crit 1 Crit 2 Pred 1 Pred 2

MORESS 0.9434 0.3315 LESSFED 0.8719 -0.1100

CATMED 0.6444 0.7647 LESSWEL 0.9211 0.0535

MOREDEF 0.9374 0.1307

Index Coefficients

Criterion Variables Predictor Variables

Pred 1 Pred 2 Crit 1 Crit 2

MORESS. 0.8044 0.0940 LESSFED 0.7434 -0.0312

CATMED 0.5495 0.2169 LESSWEL 0.7853 0.0152

MOREDEF 0.7993 -0.0371



Table 4

Prediction of Composite (C1) Scores

Using Alternate Predictor Variable Combinations

and PROC RSQUARE

Predictor Set Variable(s) in Set Rc2

1 ZLSFD .552579

2 ZLSWL .616706

3 ZMDF .638789

4 ZLSFD, ZLSWL .636792

5 ZLSFD, ZMDF .708459

6 ZLSWL, ZMDF .638839

7 ZLSFD, ZLSWL, ZMDF .727016

Note. The Rc2 for set #7 (using all three predictor
variables) equals the squared canonical correlation, within
rounding error.



Table 5

Calculations of Unique Variance Partitions

Set Partition Result

1 Unique to ZLSFD
-Rc2 6 + Rc2 7 .088173
-.638839 + .727016

2 Unique to ZLSWL
-Rc2 5 + Rc2 7 .018557
-.708459 + .727016

3 Unique to ZMDF
-Rc2 4 + Rc2 7 .090224
-.636792 + .727016

4 Common to ZLSFD and ZLSWL
-Rc2 3 + Rc2 5 + Rc2 6 - Rc2 7 -.018507
-.638789 + .708459 + .638839 - .727016

5 Common to ZLSFD and ZMDF
-Rc2 2 + Rc2 4 + Rc2 6 - Rc2 7 -.068181
-.616796 + .636792 + .633839 - .727016

6 Common to ZLSWL and ZMDF
-Rc2 1 + Rc2 4 + Rc2 5 Rc2 7 .065656
-.552579 + .636792 + .708459 -.727016

7 Common to ZLSFD, ZLSWL, and ZMDF
Rc2 1 + Rc2 2 + Rc2 3 Rc2 4
-- Rc2 5 - Rc2 6 + Rc2 7
.552579 + .610796 + .638789 - .636792
-.708459 .638839 + .727016

.55109



Table 6

Multivariate Commonality Analysis

Partition ZLSFD ZLSWL ZMDF

1

2

Unique to ZLSFD

Unique to ZLSWL

.088173

.018557

3 Unique to ZMDF .090224

4 Common to ZLSFD, ZLSWL -.018507 - ' 1 507

5 Common to ZLSFD, ZMDF -.068181 -.068181

6 Common to ZLSWL, ZMDF .065656 .065656

7 Common to ZLSFD,
and ZMDF

ZLSWL, .55109 .55109 .55109

Sum of Partitions .55275 .616796 .638789

r2 of predictor with 55.28%
canonical composite (C1)

61.68% 63.88%



Table 7

Canonical Correlation Analysis Coefficients

Variable/
Coefficient

I

Func Stru
Sq
Stria

II
Func Stru

Sq
Stru h2

LESSFED -2.298 .872 .76 -2.182 -.110 .0121 .77

LESSWEL .912 .921 .848 5.636 .054 .003 .85

MOREDEF 2.308 .937 .878 -3.509 -.131 .017 .89

Adequacy .839

Redundancy .603 .001

Rc2 .727017 .080438

Redundancy .474 .028

Adequacy .653 .347

MORESS 1.506 .943 .889 -1.269 .332 .110 .99

CATMED -.653 .644 .415 1.858 .765 .585 1.00

20
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APPENDIX A

SAS Commands
1 DATA ONE;
2 INFILE TTECH;
3 INPUT PARTY $ 1-3 LESSFED 5-6 LESSWEL 8-9 MOREDEF 11-12
4 MORESS 14-15 CATMED 17-18 LESSED 20-21 SDI 23-24
5 IRANCON 26-27 HEARING 29-30 INVAR 32-33;
6 ZMSS=(MORESS-13.86)/1.88;
7 ZCTMD=(CATMED-13.5)/1.92;
8 ZLSFD- (LESSFED - 14.18)/4.85;
9 ZLSWK=(LESSWEL-14.45)/4.79;

10 ZMDF=(MOREDEF-14.18)/4.787;
11 C1=(1.5059*ZMSS) + (-.6529*ZCTMD);
12 C2=(-1.269*ZMSS) (1.858*ZCTMD);
13 P1=(-2.298*ZLSFD) + (.912*ZLSWL) + (2.308*ZMDF);
14 P2=(-2.1816*ZLSFD) + (5.6358*ZLSWL) + (-3.5085*ZMDF'
15 PROC PRINT;
16 VAR MORESS CATMED LESSFED LESSWEL MOREDEF;
17 PROC CORR;
18 VAR MORESS CATMED LESSFED LESSWEL MOREDEF;
19 PROC CANCORR VPREFIX=CRIT WPREFIX=PRED;
20 VAR MORESS CATMED;
21 WITH LESSFED LESSWEL MOREDEF;
22 PROC PRINT;
23 VAR MORESS CATMED LESSFED LESSWEL MOREDEF ZMSS ZCTMD
24 ZLSFD ZLSWL ZMDF C1 C2 P1 P2;
25 PROC CORR;
26 VAR P1 Cl;
27 PROC CORR;
28 VAR P2 C2;
29 PROC CORR;
30 VAR ZMSS C1;
31 PROC CORR;
32 VAR ZCTMD C1;
33 PROC CORR;
34 VAR ZLSFD P1;
3.1) PROC CORR;
36 VAR ZLSWL P1;
37 PROC CORR;
38 VAR ZMDF P1;
39 PROC CORR;
40 VAR ZMSS P1;
41 PROC CORR;
42 VAR ZCTMD P1
43 PROC CORR;
44 VAR ZLSFD Cl;
45 PROC CORR;
46 VAR ZLSWL Cl;
47 PROC CORR;
48 VAR ZMDF C1;
49 PROC RSQUARE;
50 MODEL C1=ZLSFD ZLSWL ZMDF;
51 MODEL C2 -ZLSFD ZLSWL ZMDF;

21
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